High proper motion objects with ILMT

Ramakant Singh Yadav
ARIES, Nainital
Motions of star:

(i) Motion towards or away from observer – **Radial velocity**
 Not depend on distance.

(ii) Apparent angular motion of a star across the sky with respect to more distance stars – **Proper motion**
Typical proper motion is ~ 0.1 arcsec/yr

Largest: 10.25 arcsec/yr

Barnard's star ~ In 1916, Barnard measured the PM relative to the Sun.

They are ~ 6 light year away.

Proper motions are cumulative

The effect of proper motions build up over time.

The longer you wait, the greater the apparent angular motion.

Proper motion depends on the distance
High proper motion stars

J. Skuljan et al. (1999)
Why do we search high PM stars

- To know the complete census of the Solar neighborhood stars.
- About 70% stars are M dwarfs in the Solar vicinity.
- Most of them (~60 – 70%) are single, making them more likely to host planets.
- A complete census will help to understand mass function, star formation, and kinematics of the Galaxy.
• Stars within galaxy can be classified based on their motions.

• A star moving faster than 65 to 100 km/s, relative to the average motion of stars in solar neighborhood – **high velocity stars**

• High velocity stars can be three types: Runaway, halo and hyper velocity stars.

• **Runaway stars** points away from the star cluster, of which the star was formerly a member.
• **Mechanisms to produce runaway stars**
 - Gravitational interactions between stars in a star cluster.
 - Collision or close encounter between stellar systems or galaxies.
 - A supernova explosion in a multiple star system.

• **Halo stars** are old one. Their motion is not like Sun or solar neighborhood stars.

• The nearest 45 stars called **Kapteyn’s stars** are example of high velocity halo stars.

• **Proper motion of Kapteyn’s stars** are ~ 8 arcsec/yr.
High proper motion surveys

- The most straightforward method to identify nearby stars is from proper motion surveys.
- First attempt was made by van Maanen (1915).
- Other attempts: Wolf (1919) and Ross (1939); they listed stars PM more than 0.2 arcsec/yr.
- A survey by Luyten (1979) listed 58,845 stars having PM more than 0.2 arcsec/yr.
- Lepine (2005) compiled a list of 61977 stars with PM more than 0.15 arcsec/yr in northern hemisphere down to V ~ 19 mag.
- Recently, Shen (2018) detected 61500 stars with PM more than 0.2 arcsec/yr using gaia DR2 catalogue.
ILMT high proper motion survey

(I) Two epoch images – large time gap

- First epoch image can be taken from other surveys.
- Similar filters will be preferred on both epoch.

(ii) Measure accurate positions of stars on two epoch - using PSF
(iii) Transform the positions on reference image.
(iv) Compare the positions with respect to reference image.
Thanks